
PhysCalc: a Scilab package for physical

calculation

Denis J.-Y. MARION (denis.marion@cea.fr)

November 19, 2009

Introduction

Any scientist has already experienced errors in their results or their predictions
of physical parameters. These errors are very often due to a missing conversion
between two initial data or formulas expressed in different systems of units. Yet
the PhysCalc package doesn’t ensure that your calculations will be correct, it
still can be of great help when dealing with values and constants gathered from
different bibliographical sources, hence possibly expressed in varied systems of
units.

PhysCalc facilitates the declaration and the correct use of physical quantities
in Scilab. Once all your constants and parameters are declared (with a very light
syntax), any operation and Scilab function can be used to work on them. While
you’re concentrated on your work and the physical meaning of your results,
PhysCalc:

• checks for you that your operations have a sense (e.g. that you are not
adding or concatenating speeds and energies...)

• makes implicitly the appropriate conversions when adding two quantities
of identical physical meaning (e.g., a speed in International Units and a
speed in CGS units).

• calculates the unit of the result of every operation (addition, division,
multiplication, exponentiation,...) based on physical operands.

• displays your results with their unit in a human-readable format. For
instance:

--> E = .5 * my_mass * my_speed^2
E =

2 -2
8.983733e+01 kg.m .s (#International)

1



Installation and use of PhysCalc

For a comprehensive example, please refer yourself to the Units.sci file where
all the following rules are synthesised in a working manner.

Install the package

PhysCalc consists in only one mandatory .sci file called PhysCalc.sci. To
include it in your scope, just chdir() in the correct directory and then type

--> exec(’PhysCalc.sci’);

This file declares a new type called "UNIT", a mlist representing a vector (or a n-
dimension array) of physical quantities. It also defines the operators concerning
this new type.

The two other files included in the .gz package are only examples showing
how to declare your own systems of units and your units (file Units.sci) and
your physical constants and parameters (file Constants.sci).

Declare different systems of units

In preamble to any work with PhysCalc, you must first initialize the global vari-
able called SystemList, as shown in the first line of Units.sci. This variable
will be used by PhysCalc to store the different unit systems you will declare.

--> global SystemList ; SystemList = list();

The first system created will be used as the ”reference” system and will then
have a privileged role. To declare a system of units, use the defUnitSystem
function with the following syntax:

defUnitSystem(SystemName, ConversionFactors, UnitNames);

where:

• SystemName is a character string describing the new system, for instance
#International, #ISU, #CGS, #BTU... The ’#’ character is not manda-
tory but helps differenciate the unit systems, the units and the physical
constants themselves...

• ConversionFactors is a vector of real numbers. These represent the
factors of conversion between the units of your new system and the ”refer-
ence” system. Hence, when you declare the first system, ConversionFactors
must be a vector of k ones, where k is the number of units you will be
using in your work (length, mass, time, current, temperature,... up to
seven in a full system of units).

• UnitNames is a string vector of length k. Each string represents the name
of the unit which will be printed (exponentiated to the right power) when
displaying a quantity expressed in the newly created sytem of units.

2



Here’s an example of the call you may want to make if you desire to declare the
International System of Units as the reference system:

defUnitSystem("\#International", [1, 1, 1, 1, 1, 1, 1], ...
[’m’, ’kg’, ’s’, ’A’, ’K’, ’mol’, ’cd’]) );

and then the CGS system as an alternative system:

defUnitSystem("\#CGS", [1e-2, 1e-3, 1, 1, 1, 1, 1], ...
[’cm’, ’g’, ’s’, ’A’, ’K’, ’mol’, ’cd’]) );

The second declaration stipulates that PhysCalc will apply, for instance, a con-
version factor of 0.01 to convert a length expressed in CGS units in IS units.

NB: If the first system you declared owned k units, all subsequent systems
must also own k units.

Declare units and constants

Units and quantities

Once you have declared all the systems of units you will need for your work, you
can define units which will be ”shortcuts” for the further declarations. Units
are in fact defined as physical quantities with a numerical value equal to 1 in
the reference system. To declare a unit (or any physical quantity), use the
defQuantity function:

_NewUnit = defQuantity(SystemName, Value, UnitsExponentiation) );

where

• NewUnit is the name of the new unit you want to declare. The underscore
is not mandatory but, as already said, helps to differentiate units from
other variables in the Scilab scope.

• SystemName is a string : the System of Units in which the unit is described.

• Value is a real number: the numerical value of the unit in the SystemName
system.

• UnitsExponentiation is the power at which every unit is exponentiated
to form the desired unit. For instance, an energy is a mass multiplied
by the square of a velocity, thus the following definition of the joule ” J”
(which you can find in Units.sci):

_J = defQuantity("#International", [2, 1, -2, 0, 0, 0, 0] );

If you observe thoroughly the Units.sci file, you will see that the most
common units are already defined there, all with their standard name1, but
you can of course define any unit you want. Good examples would be to define
thermodynamical units, or units more closely related to your work (the electron-
volt or the GeV for instance).

1as quoted for the American NIST, and with the exception of the ohm which is, of course,
not named ” Ω” but Ohm.

3



Constants and physical parameters for your work

This preliminary job of defining unit systems and units is meant to be done
only once, in preliminary scripts like Units.sci. You should define the real
quantities on which you work in a separate file, as it is done in Constants.sci.
This file includes some very common physical constants2. Let us examine a line
of this file, for instance the definition of the Boltzmann constant ”kB”:

kB = 1.3806504e-23 & (_J * _K^(-1)) & #International ;

We see that the declaration of a parameter begins with its numerical value,
followed by an ampersand character ”&”, followed then by a formation of units,
once again followed by an ampersand and finally ending with the name of the
unit system the numerical value is given in. When preceded by a real (scalar,
vector, matrix, ...) and followed by a unit, the ampersand character ”&” has
the following meaning:

NewQuantity = x & U

returns the UNIT-type mlist NewQuantity formed of the same unit exponenti-
ation as U, declared in the same System of units, and with a numerical value
being equal to x. When preceded by a UNIT-type mlist (scalar, vector, ma-
trix, ...) and followed by a unit System, the ampersand character ”&” has the
following meaning:

NewQuantity = U & US

returns the UNIT-type mlist NewQuantity where the numerical value it contains
are ”force-cast” as the ones in the US system of units3.

Hence, the declaration of the Boltzmann constant could be read literally as:

”kB is a new quantity with the same units exponentiation as the
unit (J ·K−1) and with a numeric value of 1.3806504 · 10−23 when
expressed in the International system of units.”

It is then exactly equivalent as to say that kB = 1.3806504 · 10−23J ·K−1.

Everyday use of PhysCalc

The PhysCalc package is meant to be as transparent as possible to its user.
The best experience would be to almost never notice that it is here, except
when one needs to check the unit of a quantity, to avoid inconsistent additions,
or to convert from one system of units to one another. Once the data are
correctly defined, they should behave exactly like regular CONST vectors, that’s
why, instead of writing a long list of function definitions, we will see the usage
of the PhysCalc through a very short and comprehensive examples.

2all of them are also quoted from the American NIST.
3this syntax is somewhat redundant to the previous definition of ”&” and is kept only to

ensure that the user sees clearly in which system he is defining the numerical value of his
constants.

4



Add a physical sense to your variables

Let’s say you imported experimental data in a variable I which happens to be
a milliampere current induced in a coil. For instance:

I =
84.974524
68.573102
87.821648
6.8374037
56.084861

Just declare a new variable I1 defined as a milliampere current:

I1 = I & (1e-3 * _A);

Convert, multiply, exponentiate, display quantities

If you know the inductance of the coil (86.7 mH) L1 = 86.7 & (1e-3 * H),
you can easily calculate the electro-magnetic energy stored in your coil:

-->Energy = 1/2 * L1 * I1^2
Energy =

0.0003130
0.0002038
0.0003343
0.0000020
0.0001364

2 -2
Unit: m .kg.s (#International)

You don’t need to remember any more in which systems and submultiples of
units your data are written before you make operations on them!

Notice that the unit of the result is always written at the end of the numerical
values contained in the Energy vector when displayed in the Scilab prompt.
Also, if, in an expression, you mix data declared in a system of units A and
other data written in a system B, the result will always be declared in the
system of the leftmost member of the expression.

If you want your result converted into another system of units, try the ”\”
operator:

-->Energy \ #cgs
ans =

3130.1603
2038.4342
3343.4303

5



20.266164
1363.5793

2 -2
Unit: cm .g.s (#cgs)

The multiplication and division are considered piecewise (like regular vec-
tors) if you used the .* and ./ operators instead of * and /.

Add, concatenate, extract, insert quantities

Just above, you see that Energy is not a scalar but resembles more a classical
Scilab vector. It is possible with PhysCalc to declare scalars, vectors, matrices
and even n−dimensions arrays of such physical quantities. You can add two
vectors of identical size, proven that they have the same physical dimension4:

-->Energy + (Energy \ #cgs)
ans =

0.0006260
0.0004077
0.0006687
0.0000041
0.0002727

2 -2
Unit: m .kg.s (#USI)

-->Energy + I1;
!--error 10001

Unmatched dimensions.
at line 4 of function %UNIT_a_UNIT called by :
Energy + I1

You can as well concatenate and insert subsets of physical quantities, if they
have the same physical dimension and if they obey the same row/column rules
as for Scilab concatenation/insertion in a classical array.

-->[Energy, 2 * Energy]
ans =

0.0003130 0.0006260
0.0002038 0.0004077
0.0003343 0.0006687
0.0000020 0.0000041
0.0001364 0.0002727

4”physical dimension” means here a given exponentiation of the units.

6



2 -2
Unit: m .kg.s (#USI)

--> Energy + I1
!--error 10001

Unmatched dimensions.
at line 4 of function %UNIT_a_UNIT called by :
Energy + I1

-->Energy(3) = Energy(2)
E =

0.0003130
0.0002038
0.0002038
0.0000020
0.0001364

2 -2
Unit: m .kg.s (#USI)

--> Energy(3) = Energy(1:3);
Incorrect assignment.

at line 9 of function %UNIT_i_UNIT called by :
Energy(3) = Energy(1:3)

-->Energy(3) = I1(3);
!--error 10001

Unmatched dimensions.
at line 6 of function %UNIT_i_UNIT called by :
Energy(3) = I1(3)

This precaution for ”homogeneous” addition and concatenation can be consid-
ered too cautious, but it is there to insure that one does not mix quantities
which have nothing to do with each other, a particularity which takes all its
sense in the physical calculus.

Use every other Scilab function

Most obviously, every Scilab function cannot be redefined for this new type of
variable. But you can still use every Scilab function by taking the raw nu-
merical data contained in your physical quantities by calling first the function
numeric():

data = numeric(PhysQuantity)

7



returns the numerical data of the PhysCalc object PhysQuantity in the same-
size array data. Hence, you can for instance plot the energy stored in the coil
very rapidly:

-->time = (0:0.1:0.4) & _s; // define time in seconds
-->plot(numeric(time), numeric(Energy)); // plot Energy vs. time

Please notice that the philosophy of PhysCalc is to maintain the physi-
cal sense of the data being worked on as long as possible, so one should use
numeric() only when working on functions. A very good way to ensure (at
least in the body of a function or a script) that one works on non-dimensional
quantities (quantities ”equivalent” to the number 1) is to try/catch the compar-
ison to the ”unit” called ”_1” (declared in the Units.sci file). For instance:

function yesNo = isNonDimensional(MyPhysQuantity)
try
MyPhysQuantity(1) = _1;
yesNo = %T;
return;

catch
[str, n] = lasterror();
if (n == 10001)
yesNo = %F;
return;

else
error(str, n);

end;
end;
endfunction;

--> isNonDimensional(Energy)
ans =

F

--> isNonDimensional(_1)
ans =

T

Remarks, future improvements

• PhysCalc is still in its first stage of release, please be patient and contact
its author if you encounter some difficulties and/or unexpected results.
The author should obviously not be considered responsible for false results
inducing damages or wrongs of any kind!

8



• PhysCalc includes a very simple definition of elementary fractions (and
vectors of fractions), look at the end of the source file if you want to know
more or try typing fraction(229/27) + fraction (144/51) for a rapid
insight.

• There is no counter-indication against the definition and the use of com-
plex (as opposed to real) data. This could be of some use for harmonic
and electro-magnetic calculations.

• Please keep in mind that operations on physical quantities involve many
more individual operations than their equivalents on classical arrays. To
summarize, PhysCalc is not intended for high-throughput calculations.

9


