The “mroots.sci”’ program
multiple roots of a real
polynomial.

1 Principle, initialization of the algorithm

I tried with this program to determine the multiplicities of the roots of a real poly-
nomial P(z) of degree n, and to initialize the values of its roots using the roots.sci
and bezout.sci programs offered by Scilab, when the polynomial has multiple roots.

To find out if a polynomial has multiple roots I use the Scilab bezout.sci function
: if the ged of P(z) and dl;gf) is 1, then the roots are simple and then the program
roots.sci will give them to me.

Prerequisites :

1. In the proposed program, I want to use Scilab functions already programmed
and preferably compiled functions (in FORTRAN, C, or C ++) for speed of
execution.

2. Results of the theory.

We know the following result : when a polynomial P(z) has multiple roots, if z

is one of its roots, then zy, is also a root of dI;gc) and possibly other derivatives.

By taking a monic polynomial P(z) = Hii{((:ﬂ —)™ which has multiple roots
(and/or simple ones), then the ged of dPS?) and P(x) is :

d
k=K
9(x) = ged(P(2), “5H) = [(o —)™
k=1
Pl k=K) - dlz;m)
U(z) = o) kl;[l(x x) and V(z) = o)

3. U(x) is the decomposition without square (see the algorithm of Yun or Tobey-
Horowitz) of P(z), the roots of U(x) are then simple roots.

4. Now let us form the ratio R(z) = ggi;
roots xy, are the simple roots of U(z) and therefore the desired roots and the in-

tegers (the multiplicities) are worth my = ((m—xk)%)w:” or my, = #
da

r=x)

this ratio is : R(z) = Y51 & The

- k=1 z—xy °

This result is classic and constitutes an exercise often asked in the undergraduate

math curriculum. R(x) = ‘{,gg ==K s75- is also the breakdown into simple
elements of the report d‘zgf).

By analyzing the Bezout equation given in Scilab, [g,U]=bezout(P,dP) where P is
the starting unit polynomial and dP its first derivative, we can easily see, that the
term U(2,2) = - P/g = - Ux and U(1,2) = dP/g = Vx, moreover det(U) = -1.
So finding the simple and/or multiple roots of P(x) is to find the simple roots of
U(2,2), and the multiplicities are obtained by a calculation on U(1,2) via R(z) =
‘[jg; =]zz{(ZET;k . This is so from these considerations I propose initializing the
program Scilab mroots.sci.

Note : We can also find the multiplicities from R(z) : if we put R(z) in the form
of partial fraction decomposition using the program Scilab pfss(Vx/Ux) we find the
coefficients my, in the numerators of rational components.

By brutally applying the proposed theory, one can have, for some polynomials,
problems : if P(z) has only simple roots then the program [g, U]l = bezout (P,
dP) must theoretically give ¢ == 1 but it is not always the case, especially on the
example offered by Wilkinson, polynomial of degree 20, (see help on the roots.sci
program), we got my first version of the mroots program, which brutally applied the
theory, a multiple root of multiplicity 20, located at the isobarycenter of the roots, (an
example analog proposed by Samuel Gougeon gave this result with Scilab-Windows
but not with Scilab-Linux).

To avoid this problem I propose a test on the veracity of the roots and their respective
multiplicities, by calculating the sum and the product of the roots and by checking,
with a given precision, that this sum and this product are respectively the second and
last coefficient of the polynomial.

Notes :

As T just said if the term g(z) given by the Bezout equation is worth 1 then P(z) has
only simple roots and the mroots program uses the roots.sci program only.

Similarly in the proposed program, I first determine the zero roots from the coeffi-
cients of the polynomial so as not to "pollute" the programs bezout.sci and roots(U
(2,2)) by these null roots and decrease the degree of the polynomial of departure.
The rest of the program is the presentation of the solution.

Of course we use the roots.sci program to calculate the simple roots of U(x) :
this is where accuracy issues can arise in addition to previous remarks. Let us take an
example where the polynomial P(z) is made up of the factors : 3, (s—2)3, (s+1), (s2+
s+ 14 (s+2)4 (s +6), (s> + 1.5s +1)3, (s> + 0.95 + 0.5)*, (s + 2)5 the degree of this
polynomial is 44 and using the initialization of my program, we find the multiplicities
well and the roots (reals and complex conjugate roots) are calculated with an error of
order 1.e — 4. With the Scilab program nearly_multiples.sci with an accuracy of
0.1 one finds the real roots quite well but the multiplicities are equal to 24, as for the
imaginary roots (not pure) they are all separate.

2 improvement of the solution : search for roots,
given multiplicity, by least squares method

In many cases, the initial solution obtained seems good and gives results significantly
higher than those obtained by the roots.sci program alone (in the case of multiple
roots). Similarly, the multiplicity is correct and gives for many examples tested, a
result clearly more reliable than programs which seek to homogenize the roots in
groups (“cluster”), and to average over each of these groups : nearly_multiples.sci
program, for example from Scilab, that we can test on the previous example.

Let monic polynomial P(x) = Zif(m — xx)™* (degree n) which has K roots
each of multiplicity multiplicity my. At this stage, we therefore have the polynomial
of degree n,P(x), the vector of multiplicities mu = [my,...,ms,...,mx]T such that
Zf(my = n, which we will consider as correct and the vector of the corresponding
roots Z = [21,..., 2k, ..., 25| T first initialization of the root vector. With these roots
(vector Z) and this multiplicity (vector mu), we construct the approximate polynomial
P*(x) = H’Zif (x — z)™*. If we calculate this expression we recover the coefficients
of the approximate polynomial which are also the elementary symmetric functions of
the roots found.

Now the problem is a optimisation one, from the expressions of the elementary
symmetric functions calculated from roots, we have to solve the mathematical problem
: find the K values of the roots zx minimizing the quadratic difference between the real
elementary symmetric functions (given by the coefficients of P(z)) and those calculated
from the roots and this for a given multiplicity vector.

One will find in the literature, a publication which justifies in a theoretical way
and implements this principle with Matlab software (Author Z. ZENG, "COMPUT-
ING MULTIPLE ROOTS OF INEXACT POLYNOMIALS 7, Review "Mathematics
of computation”" Volume 74, July 22, 2004); so I'm not exposing root optimization
by the use of elementary symmetric functions, (given by the coefficients of P(z)) and
those calculated from the roots and this for a given multiplicity vector.

The program I propose uses the following programmed Scilab functions : bezout.sci,
roots.sci and least squares optimization and does not ask to make specific macros
to initialize the problem.

Notes : When we program the optimization problem, we build a difference vector
DcW between the elementary symmetric functions calculated at each iteration and
the "true" vector which is the vector of the coefficients of the studied polynomial
(except for the sign). This vector difference is of dimension n, the degree of the
starting polynomial, and depends on the K roots, with K < n : it is a transformation
of Cx — C,. Then we calculate the jacobian matrix JacW of DcW which is a
rectangle matrix (n, K) (because the starting polynomial has multiple roots). See
https: //en.wikipedia.org/wiki/jacobian_matrix_and_determinant.

On this subject, one will find on the internet exercises proposed to the French
aggregation of maths, dealing with elementary symmetric functions and the calculation
of the Jacobian matrix of these functions : these examples and the previously cited
article were the source of my reasoning, because as I mentioned at the beginning of

my presentation, I am looking at all costs to use preprogrammed Scilab functions.
The syntax of this function is :
[rm, bkerr, pjcnd, fkerr] = mroots (P [, tol [, iter [, flaglll)

2.1 Example

Consider a polynomial of degree 5 having a triple root at —1 and two complex conjugate
roots —% + gz . This polynomial is written : p(s) = 1 + 4s + 7s? + 753 + 4s* + 55.

Let’s create the programs : r=roots(p) then rinit=mroots(p,"y") to obtain on
the one hand the roots of this polynomial by Scilab, and on the other hand the roots
and the initial multiplicities by the program mroots(p,"y"), flag "y" in the mroots
instruction : we do not do any optimization.

--> format (20)

--> r=roots(p)

r =

-0.49999999999999978 + 0.866025403784433931

-0.49999999999999978 0.866025403784433931

-1.00000505953435703 + 0.000008763855248911i

-1.00000505953435703 0.000008763855248911i

-0.99998988093129559 + 0.1

We have four complex roots and one real one. Now with the program mroots(p,"y")
we obtain :

--> rinit=mroots(p,"y")//The program mroots whithout optimisation.

rinit =

-0.999999999999995 + 0.1

-0.49999999999999989 + 0.866025403784436821
-0.49999999999999989 - 0.86602540378443682i

Now we use mroots.sci with optimisation.

--> [rfinal,bkerr,pjcnd,fkerr]=mroots(p,1.e-14,3)
//Three iterations only.

rfinal =

-1. + 0.1 3. +
-0.50000000000000011 + 0.866025403784438491i .
-0.50000000000000011 - 0.866025403784438491 1. +
bkerr =

0.

pjend =

4.13072440814959396

fkerr =

0.

= = W
+ + +
o O O

H
+
o o o
HeoRe R

2.2 More complex problem

Let’s take the example close to the polynomial from section 1 :

The polynomial P has degree 34 and is composed of the elementary terms s, (s —
2)3, (s+1),(s2+s+1)* (s +2)%, (s+6), (s +1.55+1)3, (s> +0.95+0.5)%. To find the
roots of P we put the polynomial in the form of its coefficients : this (inexact) result
polynomial is P1 close to P, then program :

--> P1=5"3*(5-2) "3*(s+1) *(s*s+s+1) ~4x(s+6) *(s+2) ~4*. .
(s*s+1.5%s+1)~3*(s*s+0.9%s+0.5)"4 ;

--> RAc=roots(P1)

RAc =

-6. + 0.1

2.0000032 + 0.00000561

2.0000032 - 0.0000056i

It’s pretty much anything!!

--> format(16)
--> RACI=mroots(P1,"y") //Initialisation without optimisation.
RACI =

0. +0.1 3. +0.1
-5.9999999999998 + 0.1 1. + 0.1
2. + 0.1 3. +0.1
-2.0000000041839 + 0.1 4. + 0.1
-1.0000229796092 + 0.1 1. + 0.1
-0.4999999770785 + 0.86602464202691 4. + 0.1
-0.4999999770785 - 0.86602464202691 4. + 0.1
-0.7499976077684 + 0.6614453600487i 3. + 0.1
-0.7499976077684 - 0.6614453600487i 3. + 0.1
-0.4500016559398 + 0.5454416934457i 4. + 0.1
-0.4500016559398 - 0.5454416934457i 4. + 0.1

--> [RACFINAL, bkerr, pjcdn, fkerr] = mroots(P1)//With optimisation
RACFINAL =

0. +0.1 3. +0.1

-6. + 0.1 1. +0.1

2. +0.1 3.

-2. + 0.1

-1.0000000000007 + 0.i

-0.5 + 0.8660254037844i

-0.5 - 0.86602540378441i

-0.7499999999998 + 0.66143782776611

-0.7499999999998 - 0.66143782776611

-0.45 + 0.54543560573181

-0.45 - 0.54543560573181

+
o

i

+ 4+ + A+ o+ o+ 4+
cooooooo

AR W WA D RN
b e e b e b b

bkerr =

4.436358977D-14
pjcdn =
4616.6313404856
fkerr =
0.0000000004096

3

Bibliography :

1. en.wikipedia.org/wiki/jacobian _matrix and determinant.

. 7. Zeng, Computing multiple roots of inexact polynomials, Revue « Mathematics

of computation » july 2004.

Madina Hasan : The computation of multiple roots of a polynomial using struc-

ture preserving matrix methods. PhD thesis Sheffield University England July
2011.

. S.Gratton, A.S.Lawless, N.K.Nichols, Approximative Gauss-Newton methods for

non linear least squares problems. Numerical Analysis report 9/04 .

