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1. Hyperelastic Material Models
1.1. Ogden Model
The Ogden model was developed by Ogden (1972). It expresses the strain energy function
W in terms of principal stretches λ1, λ2 and λ3. The formulation is shown in Equation 1,
where µp and αp are material constants.

W =
n∑

p=1

µp

αp
·
(
λ

αp

1 + λ
αp

2 + λ
αp

3 − 3
)

(1)

1.2. Polynomial Model
The polynomial hyperelastic model was introduced by Rivlin & Saunders (1951). It
is formulated in terms of the two strain invariants I1 and I2 of the left Cauchy-Green
deformation tensor. With Cij denoting material constants, its strain energy is

W =
n∑

i=0,j=0
Cij ·

(
I1 − 3

)i ·
(
I2 − 3

)j
, where C00 = 0. (2)

This model is also called the generalized Rivlin model (Chang et al. 1991, Hartmann &
Neff 2003, Laksari et al. 2012).

A specific case of Equation 2 was developed earlier by Mooney (1940) and Rivlin
(1948b). It is referred to as the Mooney-Rivlin model and can be derived from Equation 2
by setting n = 1, C01 = C2, C11 = 0 and C10 = C1, which yields Equation 3 for the strain
energy W .

W = C1 ·
(
I1 − 3

)
+ C2 ·

(
I2 − 3

)
(3)

1.3. Yeoh Model
Yeoh (1993) developed a hyperelastic material model that only depends on the first strain
invariant. Like the Ogden and polynomial model, it is also based on a series expansion.
In the original article, Yeoh truncated the series after the first three terms. However, a
more general definition is used nowadays (Selvadurai 2006). Its definition of the strain
energy is

W =
n∑

i=1
Ci ·

(
I1 − 3

)i
. (4)

2. Curve Fitting Using the Example of a 5 Parameter
Polynomial Model

Hyperelastic material model fitting “is a very delicate” issue (Ogden et al. 2004).
The aim of curve fitting is to fit the parameters of a model function in such a way

that the fitted curve is as close to the measured curve as possible. In order for the fitted
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model to represent the real behavior of the material, more than one loading mode should
be considered. In addition to that, the selected loading modes shall be similar to the
desired loading case of the application (Meier et al. 2003).

Curve fitting for hyperelastic material models divides into four subtasks. First of
all, the stress-strain curves need to be revised and adapted, where required. Second, a
constitutive equation (material model) has to be chosen, and third, an error criterion for
the goodness of fit has to be defined. The final step is to qualitatively and quantitatively
compare the resulting curve to the measured data.

The curve fitting process is similar for the Yeoh and Ogden hyperelastic models. The
stress-strain relationships for both models are derived in the appendix (subsection A.1).

2.1. Derivation of the Stress-Strain Relationships for a 5 Parameter
Polynomial Model

The curve fitting process is the same for different hyperelastic models. Stress-strain
relationships for the same loading modes, in which the stress-strain curves were meas-
ured, have to be derived. In the following, the stress-strain relations of a 5 parameter
polynomial model will be derived in compression/tension and simple shear.

Recalling Equation 2 from section 1, the constitutive equation of the polynomial model
defines the strain energy W as (ANSYS Inc. n.d.)

W = C10·
(
I1−3

)
+C01 ·

(
I2−3

)
+C20·

(
I1−3

)2
+C11·

(
I1−3

)
·
(
I2−3

)
+C02 ·

(
I2−3

)2
. (5)

The strain invariants, expressed in terms of the three stretch ratios λ1, λ2 and λ3, are
(Treloar 1973)

I1 =λ2
1 + λ2

2 + λ3
3, (6)

I2 =λ2
1 · λ2

2 + λ2
2 · λ2

3 + λ2
3 · λ2

1 and (7)
I3 =λ2

1 · λ2
2 · λ2

3. (8)

The stretch ratios λi represent the deformation of a differential cubic volume element
along the principle axes of a Cartesian coordinate system. They are defined as the ratio
of the deformed length li to the undeformed length Li (Equation 9). The stretch ratio
equals 1 in undeformed state.

λi = li
Li

i ∈ [1, 2, 3] (9)

Note that given the assumption of incompressibility of the material, the third strain
invariant I3 yields

I3 = λ2
1 · λ2

2 · λ2
3 = 1, (10)

because of the conservation of the volume of a differential volume element. As a result,
the incompressible polynomial model is expressed in terms of the first and second strain
invariant only.
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Combining Equation 6 and Equation 7 with Equation 10 eliminates Equation 8 and
yields the first and second strain invariant for an incompressible material in Equation 11
and Equation 12.

I1 =λ2
1 + λ2

2 + λ2
3 (11)

I2 =λ−2
1 + λ−2

2 + λ−2
3 (12)

Stress-Stretch Relationship for Tension and Compression
For the derivation of the stress-stretch relationships for tension and compression, we
consider a cubic differential volume element (Schwarzl 1990, p. 298-299). The volume is
subject to the uniaxial tensile stress σ (Figure 1). Axes 1, 2 and 3 denote coordinate
axes, which are parallel to the principal axes of the cube. The three principal stretches
with regard to the coordinate axes are λ1, λ2 and λ3. If λ is the stretch parallel to the

1

2

3

σ

σ

Figure 1
A cubic differential volume element with
tensile stress σ and Cartesian coordinate
system.

tensile stress σ, deformations in 2 and 3 are equal (Treloar 1973). The corresponding
mathematical expressions are

λ1 =λ and (13)
λ2 =λ3. (14)

Since the material is considered incompressible, Equation 10 applies. Together with
Equation 14 this yields

λ2 = λ3 = λ
1
2 . (15)

Equation 13 and Equation 15 can now replace λ1 and λ2 in Equation 11 and Equa-
tion 12. Resulting from this, the two strain invariants for an incompressible material in
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tension or compression are

I1 =λ2 + 2λ−1 and (16)
I2 =λ−2 + 2λ. (17)

The actual relation between engineering stress and stretch for an incompressible ma-
terial under tension/compression is (Rivlin 1948b, 1956)

σe = 2 ·
(
λ − λ−2

)
·

∂W

∂I1
+ 1

λ
· ∂W

∂I2


. (18)

Where:
σe: Engineering stress λ: Stretch, parallel to σe

W : Strain energy I1, I2: Strain invariants

Inserting Equation 5 into Equation 18, followed by calculation and simplification, gives

σe = 2 ·
(
λ − λ−2

)
·
[
C10 + 2C20

(
I1 − 3

)
+ λ−1C01 + 2λ−1C02

(
I2 − 3

)

+ C11
(
I2 − 3 + λ−1I1 − 3λ−1

)]
.

(19)

Finally, using Equation 16 and Equation 17, the two strain invariants I1 and I2 can
be eliminated. After simplification, the engineering stress-stretch relationship for
tension and compression is

σe

(
λ
)

= 2 ·
(
λ − λ−2

)
·
[
C10 + C01λ−1 + 2C20

(
λ2 + 2λ−1 − 3

)

+2C02
(
2λ + λ−2 − 3

)
+ 3C11

(
λ − 1 − λ−1 + λ−2

)]
.

(20)

Stress-Strain Relationship for Simple Shear
The derivation of the stress-strain relation for simple shear starts with a differential
volume element, as well. It is subject to the shear stress τ (Figure 2). Simple shear
strain γ is defined as (Brown 2006, p. 155)

γ = x

h0
. (21)

Where h0 equals the thickness along axis 2 and x is the displacement along axis 1.
Let λ be the stretch in axis 1. The surfaces parallel to the 1-3 plane move parallel

against each other, along axis 1. Therefore the gap distance does not change. The
principal stretches λ1 and λ2 are (Rivlin 1948b, Treloar 1973)

λ1 = λ and (22)
λ2 = 1. (23)
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1

2

3

τ

τ

h
0

x

Figure 2
A cubic differential volume element under shear stress τ . The amount of shear strain γ
is defined as the quotient of the displacement along axis 1 and the constant height h0.

Again, assuming incompressibility, Equation 10 applies and λ3 yields

λ3 = λ−1. (24)

The first and second strain invariant are the same for simple shear and can be expressed
in terms of the amount of shear strain γ (Rivlin 1948b). They are

I1 = I2 = 3 + γ2. (25)

The stress-strain relationship for simple shear is (Rivlin 1948a, 1956)

τ = 2 · γ ·
(

∂W

∂I1
+ ∂W

∂I2

)
. (26)

Inserting Equation 5 into Equation 26 gives

τ = 2 · γ ·
[
C01 + C10 + 2 ·

(
I1 − 3

)
·
(
C20 + C11 + C02

)]
, (27)

which, in combination with Equation 25, yields the stress-strain relationship for
simple shear in Equation 28.

τ
(
γ
)

= 2 ·
(
C01 + C10

)
· γ + 4 ·

(
C20 + C11 + C02

)
· γ3 (28)
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2.2. Definition of the Curve Fitting Problem
Curve Fitting aims to fit one or more parameters of a model equation σ

(
λ, Parameters

)

in such a way that a given curve σM

(
λ
)

is approximated as closely as possible. In this
study, the stress-strain curve for simple shear and the combined stress-stretch curve for
tension and compression have to be approximated. The stress-stretch curve in tension
and compression will be used to explain the regression analysis process. The process for
simple shear is analogous.

Ideally, the fitted model equation resulting from regression analysis should yield the
same stress values as the measured curve (Equation 29).

σ
(
λ, Parameters

)
= σM

(
λ
)

(29)

Where σ
(
λ, Parameters

)
is the model function, which depends on stretch and parameters,

and σM

(
λ
)

denotes the measured stress-stretch curve.
The model equation for compression and tension was derived in section 2.1 and is

Equation 20. It has the form

σ = f
(
λ, C10, C01, C20, C02, C11

)
. (30)

The parameters (material constants) Cij are considered constant and have to be de-
termined through regression analysis. Furthermore, in the compression/tension model
equation, they only appear linearly. As the number of data pairs within the measured
stress-stretch curve greatly exceeds the number of parameters within the model equa-
tion, the problem definition is to solve an overdetermined system of linear equations
(Hartmann 2001) in such a way that a satisfactory goodness of fit is achieved.

2.3. Regression Analysis
In general, the overdetermined system of linear equations from subsection 2.2 cannot be
solved. In order to overcome this problem, regression analysis can be applied. A set of
parameters, which yields to a curve that is as close to the measured curve as possible, has
to be determined. For a satisfactory curve fit, the difference between the stress values of
the measured curve and the model equation has to be small for a wide rage of stretches.

The least squares method uses the sum of the difference of the ordinates of two stress
values as an error criterion (Papula 2008, p. 691), which has to be minimized (Equa-
tion 31).

ǫls =
n∑

i=1

(
σM

(
λi

)
− σ

(
λi, C10, C01, C20, C02, C11

))2

→ minimum (31)

With:

• ǫls: Least square error,

• i: Number of measured data pairs,

• λi: Measured stretch value,
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• σM

(
λi

)
: Measured stress at λi,

• σ
(
λi, C10, C01, C20, C02, C11

)
: Computed stress value of the model function at λi.

In ANSYS1, Equation 31 is called “unnormalized least squares fit” ANSYS Inc. (August
2002).

Since Equation 31 is biased towards higher stress values, a weighted error criterion is
more useful in many cases. Equation 32 accounts equally for every stress value and is
called “normalized least square fit” ANSYS Inc. (August 2002).

ǫnorm =
n∑

i=1


1 −

σ
(
λi, C10, C01, C20, C02, C11

)

σM

(
λi

)




2

→ minimum (32)

Note that Equation 32 would lead to a division by zero if σM

(
λi

)
= 0. For this case

an exception has to be added. In this study, Equation 33 was chosen. It is the same
formulation as in the least square error in Equation 31. For small values around zero,
the normalized and the unnormalized least square criterion yield similar results.

ǫnorm =
(

σM

(
λi

)
− σ

(
λi, C10, C01, C20, C02, C11

))2

for σM

(
λi

)
= 0 (33)

The software ANSYS offers a curve fitting module for hyperelastic material models.2
However, despite supporting higher order constitutive equations for input of material
constants, not all supported material models can be fitted up to these orders. Hence,
the Equations 20 and 28 and both error criteria3 were implemented in a Scilab4 script in
order to be able to fit higher order constitutive equations. The minimization algorithm
used in Scilab is Nelder-Mead (Nelder & Mead 1965).

Since two curves, one for tension/compression and one for simple shear, have to be
fitted in this study, the error used for the minimization process has to consist of the
respective errors of both curves. The Scilab script treats the error for both loading
scenarios equally (Equation 34).

ǫmin = ǫtens/comp + ǫshear (34)

With:

• ǫmin: Error used in the minimization process,

• ǫtens/comp: Error from combined tension and compression curve fitting,

• ǫshear: Error from simple shear curve fitting.

1ANSYS Inc., Canonsburg, Pennsylvania, USA
2Simple shear data can only be input in ANSYS Classic.
3As in ANSYS, the user can choose which criterion to use.
4Scilab Enterprises, Versailles, France
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There exists a global analytic solution for the parameter set in the linear least square
problem of the compression/tension curve. However, there is no analytic solution for the
nonlinear least square problem that occurs when trying to fit the curve for simple shear
(Zielesny 2011, p. 41-42). The method applied in this study is suitable for both linear and
nonlinear problem types, and is easily adaptable for different constitutive hyperelastic
equations.

As the Ogden models lead to a nonlinear optimization problem which requires an
iterative solution, 1000 iterations were carried out for each model in ANSYS, as well as
in the Scilab script.

2.4. Evaluation of the Goodness of Fit
The goodness of fit is evaluated using the adjusted coefficient of determination in Equa-
tion 35 (Fahrmeir et al. 2009, p. 161). Contrary to the plain coefficient of determination
(Equation 36) (Fahrmeir et al. 2009, p. 98-99), it accounts for the number of parameters
in the model function. A good fit is indicated if the adjusted coefficient of determination
is close to 1, or, ideally, equals 1 for a perfect fit.

R̄2 = 1 − n − 1
n − p − 1 ·

(
R2 − 1

)
(35)

R2 = 1 −

n∑
i=1

(
Yi − Ŷi

)2

n∑
i=1

(
Yi − Ȳi

)2 (36)

Where:

• R̄2: Adjusted coefficient of determination,

• n: Number of data pairs,

• p: Number of parameters in the model function,

• R2: Coefficient of determination,

• Yi: Measured value,

• Ŷi: Value from the model function,

• Ȳi: Average of the measured values.

3. Comparison with a commercial FEA code
Different orders of the polynomial, Ogden and Yeoh model were tested during the curve
fitting process. The respective models and their computed material parameters are
shown in Tables 1 to 3.
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Table 1
Ogden models used in curve fitting and results for the material parameters in ANSYS
and using the Scilab script ([µi] = MPa, [αi] = 1).

Order error number of parameters from curve fitting routine
criterion parameters ANSYS Scilab script

2nd norm. 4 µ1 = −0.1244
α1 = 1.316
µ2 = 0.6225
α2 = 1.299

µ1 = 4.290
α1 = 0.1370
µ2 = 7.484 × 10−3

α2 = 4.346
3rd abs. 6 µ1 = 0.1770

α1 = 1.055
µ2 = 0.2338
α2 = 1.041
µ3 = 0.3251
α3 = 0.9889

µ1 = 28.01 × 10−3

α1 = 3.525
µ2 = −4.385
α2 = 0.7777
µ3 = 7.270
α3 = 0.5449

4th abs. 8 not available µ1 = 58.90 × 10−3

α1 = 2.800
µ2 = −3.552
α2 = −0.3355
µ3 = 4.380
α3 = −79.13 × 10−3

µ4 = −0.4110
α4 = 0.9359
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Table 2
Polynomial models used in curve fitting and results for the material parameters in AN-
SYS and using the Scilab script. The model with three parameters is equivalent to a
three parameter Mooney-Rivlin model. ([Cij] = MPa).

Order error number of parameters from curve fitting routine
criterion parameters ANSYS Scilab script

1st norm. 2 C10 = 37.98 × 10−3

C01 = 0.1043
C10 = 37.98 × 10−3

C01 = 0.1043
- abs. 3 C10 = 74.92 × 10−3

C01 = 73.71 × 10−3

C11 = −1.972 × 10−3

C10 = 74.92 × 10−3

C01 = 73.71 × 10−3

C11 = −1.972 × 10−3

2nd abs. 5 C10 = −88.41 × 10−3

C01 = 0.2197
C20 = 0.2122
C11 = −0.2909
C02 = 78.22 × 10−3

C10 = −88.41 × 10−3

C01 = 0.2197
C20 = 0.2122
C11 = −0.2909
C02 = 78.22 × 10−3

Table 3
Yeoh models used in curve fitting and results for the material parameters in ANSYS
and using the Scilab script ([Ci0] = MPa).

Order error number of parameters from curve fitting routine
criterion parameters ANSYS Scilab script

3rd norm. 3 C10 = 0.1595
C20 = −6.930 × 10−3

C30 = 0.4030 × 10−3

C10 = 0.1595
C20 = −6.930 × 10−3

C30 = 0.4030 × 10−3

4rd norm. 4 not available C10 = 0.1593
C20 = −6.220 × 10−3

C30 = 0.2210 × 10−3

C40 = 11.90 × 10−6

5rd norm. 5 not available C10 = 0.1573
C20 = 2.391 × 10−3

C30 = −3.907 × 10−3

C40 = 0.6600 × 10−3

C50 = −32.60 × 10−6
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4. Discussion
Scilab scripts were created in order to be able to fit experimental stress-strain data
to higher order hyperelastic material models than ANSYS allows for. For lower order
models, the scripts were compared against the parameter sets provided by ANSYS.

The Scilab parameter sets for the polynomial and the Yeoh model are consistent
with those from ANSYS (see Table 3 and Table 2). This indicates that the stress-
strain equations were derived and implemented correctly, as well as that the regression
algorithm and error criteria yield the same results.

However, discrepancies were discovered when fitting the Ogden material models (see
Table 1). When examining these differences, a 1st order Ogden model was fitted with
absolute and normalized error criteria.5 For both criteria, the Scilab script yields
similar results to what ANSYS provides. Table 4 shows a comparison of the four
parameter sets.

Table 4
Ogden models material parameters, fitted in ANSYS and using the Scilab script ([µi] =
MPa, [αi] = 1).

Order error number of parameters from curve fitting routine
criterion parameters ANSYS Scilab script

1st abs. 2 µ1 = 0.7055
α1 = 1.0546

µ1 = 0.7208
α1 = 1.0345

1st norm. 2 µ1 = 0.5571
α1 = 1.1609

µ1 = 0.6356
α1 = 1.023

These data suggest that the discrepancies are not due to false implementation of the
stress-strain relationships of the Ogden models, but because of other differences, such as
the optimization algorithm used and the nonlinear nature of the problem. In particular,
the latter combination and the existence of more than one minimum makes it difficult
to effectively compare both curve fitting algorithms for the Ogden model. Even using
identical start values for the iteration process may lead to completely different material
parameter sets (Zielesny 2011, p. 146). This effect increases with higher order models.

The curve fitting algorithms presented in this study allow fitting of compression/tension
and simple shear test data to any order Ogden models, any order Yeoh models and 2nd,
as well as 1st, order polynomial models. As a special case of the polynomial model, a
three parameter Mooney-Rivlin model may be fitted, too. Contrary to the curve fitting
module in ANSYS, the Scilab scripts allow for biasing of one of the two loading cases
(see Equation 34) and increased adjustability of optimization parameters.

In addition to that, auxiliary conditions for the material constants could be considered
by extending the source code. However, this was not taken into account within this study
in order to be able to compare the results to those from ANSYS. Furthermore, as the

5Both of these models were no longer considered after the preselection of material parameter sets, due
to a bad fit.
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material constants within phenomenological constitutive models do not have a physical
meaning, there is only the pursuit of material model stability, which would endorse the
introduction of auxiliary conditions. Nonetheless, restricting the Mooney-Rivlin model
to positive parameter values, for example, “seems to be too restrictive” (Hartmann 2001).
It would also be recommendable to use an error criterion for curve fitting, which takes
into account the error in measurement during the curve fitting process (Zielesny 2011,
p. 58).

A. Appendix
This appendix contains further information on the derivation of stress-strain relation-
ships for the Ogden and Yeoh material models, as well as the curve fitting results, which
were not considered for use within this study.

A.1. Derivation of Stress-Strain Relationships
The derivation of stress-strain relationships for tension/compression and simple shear
for the Yeoh as well as the Ogden hyperelastic model is shown in the following. As with
the Polynominal model, material incompressibility was considered.

A.1.1. Yeoh Model

The constitutive equation for the Yeoh model is shown in Equation 4 on page 1. The
strain energy W is

W =
n∑

i=1
Ci ·

(
I1 − 3

)i
. (37)

A.1.1.1. Tension and Compression
If one applies Equation 18 to Equation 37 this yields

σe =
n∑

i=1
2 · Ci · i ·

(
λ − λ−2

)
·
(
I1 − 3

)i−1
(38)

for the tensile/compressive engineering stress.
The first strain invariant in Equation 38 for tension and compression can be replaced

by Equation 16, leading to the stress-stretch relation in tension and compression, which
is

σe

(
λ
)

=
n∑

i=1
2 · Ci · i ·

(
λ − λ−2

)
·
(
λ2 + 2λ−1 − 3

)i−1
(39)

for a nth order Yeoh model.
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A.1.1.2. Simple Shear
Inserting Equation 37 into Equation 26 gives

τ =
n∑

i=1
2 · γ · Ci · i ·

(
I1 − 3

)i−1
. (40)

If one combines Equation 40 with Equation 25, this yields the stress-strain relation for
simple shear of a nth order Yeoh model, which is

τ
(
γ
)

=
n∑

i=1
2 · γ · Ci · i · γ2·(i−1). (41)

A.2. Ogden model
The Ogden model is based on principal stretches. Its constitutive equation for the strain
energy W is Equation 42 (also see Equation 1).

W =
n∑

p=1

µp

αp
·
(
λ

αp

1 + λ
αp

2 + λ
αp

3 − 3
)

(42)

A.2.1. Compression and Tension

In compression and tension, the relations as described in Equation 13 and Equation 15
apply. Inserting them into Equation 42 yields

W
(
λ
)

=
n∑

p=1

µp

αp

(
λαp + 2 · λ− 1

2 αp − 3
)
. (43)

According to Doghri (2000), as cited in Stommel et al. (2012, p. 77), the stress-strain
relation for compression and tension can be obtained by deriving the strain energy with
respect to the stretch (Equation 44).

σ
(
λ
)

=
∂W

(
λ
)

∂λ
(44)

Inserting Equation 43 into Equation 44 yields the engineering stress-strain equation
for compression and tension for a nth order Ogden model, which is shown in Equation 45.

σ
(
λ
)

=
n∑

p=1
µp ·

(
λαp−1 − λ−( 1

2 αp+1)
)

(45)

A.2.1.1. Simple Shear
The relations of the principal stretches in simple shear are shown in Equations 22 to 24.
Inserting them into Equation 42 gives

W
(
λ
)

=
n∑

p=1
µp ·

(
λαi + λ−αi − 2

)
. (46)
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Again, Equation 44 applies and finally yields to Equation 47 as the simple shear
stress-strain relationship for a nth order Ogden model. (Ogden 1972)

τ
(
λ
)

=
n∑

p=1
µp · λαp − λ−α

λ + λ−1 (47)

The stretch in simple shear was not measured during the material tests. Ogden (1972)
showed that the simple shear strain can be expressed in terms of the stretch as follows:

λ − λ−1 = γ. (48)

Using Equation 48, the stretch cannot be directly calculated by solving the equation for
λ. However, Equation 48 may be harnessed in order to iteratively compute the amount
of stretch from a given amount of shear. The corresponding function code in Scilab is:

// compute stretch from given amount of shear
// Input: a simple shear strain value <gamma>
// Output: a stretch value <lambda>

function out = ConvToStretch(gamma)
lambda = 1; // start value for iter.
while abs((gamma+lambda^(-1)-lambda))>1e-6 // iteration loop

lambda = gamma + lambda^(-1);
end
out = lambda;

endfunction
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2 Errata

This is to inform about two flawed equations in the article “Curve Fitting for Ogden,
Yeoh and Polynomial Models” by Michael Rackl.

2.1 Equation 15

In equation 15, a minus sign is missing.

λ2 = λ3 = λ−
1
2

2.2 Equation 20

Equation 20 is missing a λ−1 in the second line’s first term.

σe(λ) = 2 · (λ− λ−2) ·
[
C10 + C01λ

−1 + 2C20(λ
2 + 2λ−1 − 3)

+ 2C02λ
−1(2λ+ λ−2 − 3) + 3C11(λ− 1− λ−1 + λ−2)

]
2.3 Impact on the Scilab source code

Both these equations are and were correctly implemented in the Scilab source code at
https://fileexchange.scilab.org/toolboxes/350000.
Hence, the source code was not affected by the flawed equations mentioned above.
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