u]
‘ 8]
n

Christian Klauer!

1Control Systems Group, Technische Universitit Berlin

Kontakt: klauer@control.tu-berlin.de

May 2012

RN Ge

OpenRTDynamics is

@ A simulator for time-discrete dynamical systems
@ A Scilab-Toolbox for describing these systems in an block/signal based
way.
@ Additional modules (e.g. an remote control interface, state machines,
parallelism using threads, math formula parsing, ...)
Compared to other systems it features

@ A new way of defining schematics, which enables well structured code
that is easy to maintain as projects get bigger.

@ Multiple nested-schematics: Switching around sub-schematics and
resetting them (like a restart).

@ Because of an interpretation algorithm, schematics can be exchanged
online.

The interpreter can be interfaced via
@ The provided Scicos-Block

o The executable 1ibdyn_generic_exec

@ Third party C++ Code by linking to the shared library libortd.so

Interface to

B T _
se
[
1 File; Zoom; UnZoom} 3D Rot, : Edit
E ’\:]
genetic libdyn IEI Graphic |
1 2 »/’- n 3
b © © @ SetBlock properties L3 204

4 ORTD Scicos Interface Block (libdyn) .
Insizes: | (5] -
Outsizes: i ="
——>mode(-1); use master: |0 1.5
Start HART toolbox .
Load macros master tcp port: [12345 1ol
Load shared libr fiename: [oscillatar
shared archive loaded 0.5
Link done num events: 1
Load help 00-
shematic id: 501
. - 0 T r T T
—-»scicaos; Dismiss OK) i £ 200
t

@ Specification of the in- and output port sizes along the name of the
schematic to load.

@ Multiple interface blocks within one Scicos diagram are possible

Standalone interface

demo : bash

file Edit View Bookmarks Settings
C lib

- dema : bash

@ Simulation mode or real-time execution with RT-Preempt scheduling or
using soft RT.

Christian Klauer! 1Control Systems Group, Technische Universitit Berlin Kor

How schematics are defined:
@ Signals are represented by a special Scilab variable type.
An Example:

@ Blocks are created by calls to special Scilab functions. They can take
input signals and can give back new signal variables.

@ A linear combination of two signals (v = u; — up) would look like:
[sim, y] = ld_add(sim, defaultevents, list(ul, u2),
o A time-discrete transfer function is implemented like this:
Please Note:

y =ul - u2

o For all calculations the toolbox functions have to be used. Not possible:
O «Fr «=H = D0
* Christian Klauer! 1Control Systems Group, Technische Universitit Berlin Kor

[sim, y] = ld_ztf(sim, defaultevents, u, (1-0.2)/(z—-0.2));

Some more explanation:

[sim, y] = ld_add(sim, defaultevents, list(ul, u2), [1, =11);

@ The variable sim is used to emulate Object-Orientated behaviour in
Scilab.

@ defaultevents defines a set of events that will be forwarded to the
block. (Commonly set to 0)

For Help:

@ A list of blocks is available through the Scilab help browser, e.g. try
help 1d_add.

Definition: Within Scilab by writing a function that describes the blocks and
connections:

// This is the main top level schematic
function [sim, outlist]=schematic fn(sim, inlist)
ul

= inlist(1); // Simulation input #1
u2 = inlist(2); // Simulation input #2

// sum up two inputs
[sim,out] = ld add(sim, defaultevents, list(ul, u2), [1, 1])
// save result to file

[sim, save0] = ld dumptoiofile(sim, defaultevents,
"result.dat”, out);

// output of schematic

outlist = list(out); // Simulation output #1
endfunction

o It takes the simulation object sim as well as a list of in- and outputs.

Generation: A set of function calls trigger evaluation of the functions
describing the schematic.

defaultevents = [0]; // main event

// set-up schematic by calling the user defined

// function "schematic_fn”

insizes = [1,1]; outsizes=[1];

[sim_container_irpar, sim]=Llibdyn setup schematic(schematic_fn,
insizes, outsizes);

// Initialise a new parameter set
parlist = new irparam set();

// pack simulations into irpar container with id = 901
parlist = new irparam container(parlist, sim_container irpar, 901);

// irparam set is complete convert to vectors
par = combine irparam(parlist);

// save vectors to a file
save irparam(par, 'simple demo.ipar’, ’simple demo.rpar’);

@ The schematic is saved to disk by save_irparam.

Execution:

schematic.

@ This Scilab-Script will generate two files simple_demo.ipar and
executed.

simple_demo.rpar, which contain a encoded definition of the whole
@ These file are then loaded by the provided interpreter library and

Superblocks are introduced by writing a new Scilab function.

function [sim, y]=ld_mute(sim, ev, u, cntrl, mutewhengreaterzero)
[sim, zero] = ld_const(sim, ev, 0);

if (mutewhengreaterzero == %T) then // parametrised functionality
[sim,y] = 1d switch2tol(sim, ev, cntrl, zero, u);
else

[sim,y] = 1d switch2tol(sim, ev, cntrl, u, zero);
end
endfunction

@ This example describes a superblock, which has two inputs u and cntrl
and one output y.

@ mutewhengreaterzero describes an parameter.
o NOTE: With the if / else construction a superblock can have different

behaviour depending on a parameter! (This enables great possibilities
for creating reusable code)

Once defined, the superblock can be used like any other ORTD-Block:

[sim, y] = ld_mute(sim, ev, u=input, cntrl=csig,

mutewhengreaterzero=%I)

u]
‘ 8]
n
it

RN Ge

How to implement feedback?

@ A dummy signal is required, which can be used to connect a real block:
[sim, feedback] = libdyn_new_feedback(sim);
[sim]

@ Later in the ongoing code, the loop is closed via 1ibdyn_close_loop,
which means feedback is assigned to a real signal y:

libdyn_close_loop (sim, y, feedback);

function [sim, y]=limited int(sim, ev, u, min__, max__, Ta)
// Implements a time discrete integrator with saturation
// of the output between min__ and max__

//

// u * - input

// y * - output

/
// y(k+1l) = sat(y(k) + Ta*u , min__, max__)
[sim, u__] = 1d gain(sim, ev, u, Ta);

// create z_fb, because it is not available by now
[sim,z_fb] = libdyn new feedback(sim);

// do something with z_fb
[sim, sum_] = 1d sum(sim, ev, list(u__, z_fb), 1, 1);
[sim, tmp] = 1d ztf(sim, ev, sum_, 1/z);

// Now y becomes available
[sim, y] = 1d_sat(sim, ev, tmp, min__, max__);

// assign z_fb =y
[sim] = libdyn close loop(sim, y, z_fb);

endfunction
u =2z
= Ty q_l ,49‘ ! L

Y=7Z2f

RN Ge

u]

8]
1
n

it

function [sim, I_list, PW_list]=1ld charge_cntrl multich(sim, ev, v_list, Nch)

//
// Charge control for multiple channels using the same lookup table

// Get table data and their lengths
tabPW_ = CHCNTL. tabPw;

tabI_ = CHCNTL.tabl;

vlen = length(tabI_);

// The vectors containing the tables
[sim,TABI] = 1ld_constvec(sim, ev, tabI_);
[sim, TABPW] = 1d_constvec(sim, ev, tabPW_);

g 8] Jo 10108

// init output lists
I_list = list(); PW_list = list();

w1 yBua] Jo 10108

// loop
for i=1:Nch // Create blocks for each channel by a for lalplpE 0,1

extract L
len element
| extract L
// calc index element
[sim, index] = 1ld gain(sim, ev, v, vlen); 1
[sim, index] = ld add ofs(sim, ev, index, 1); W

L tract 2

// look up the values v2 € [0,1] b——@—’

[sim, I] = ld_extract element(sim, ev, TABI, index, ..

vecsize=vlen); : I

[sim, PW] = ld extract element(sim, ev, invec=TABPW, .. o extract 2
pointer=index, vecsize=vlen); — element

// store signals
I_list(s+1) = I; PW_list($+1) = PW; additional channels
end
endfunction
o [l =

i

xoput

// extract normalised stimulation for channel i
v = v_list(i);

xaput

it
)
pe)
i)

Principle:

@ Each state is represented by a whole sub-schematic. Thus, a state
machine contains multiple of them.

state.

Extra features:

@ Only one schematic is active at once, representing the active state.

states (counters,

o All blocks within a schematic that is going to be inactive are reset.

)

o Every time the active sub-schematic can cause switching to another

@ Possibility to share a memory among all schematics for realising global

A function (Superblock) is evaluate once for each state. Differentiation
among schematics is achieved by a select statement

function [sim, outlist, active_state, x_global_kpl, userdata]=state mainfn(sim

inlist, x global, state, statename, userdata)
printf(”defining state %s (#%d) ... userdata(l) %s\ n”, statename, state, userdata(l));

// define names for the first event in the simulation
events = 0;

// demultiplex x_global
[sim, x_global] = 1ld demux(sim, events, vecsize=4, invec=x_global);

// sample data fot output
[sim, outdatal] = ld_constvec(sim, events, vec=[1200]);

select state
case 1 // state 1
// wait 10 simulation steps and then switch to state 2
[sim, active_state] = ld steps(sim, events, activation_simsteps=[10], values=[-1,2]);

[sim, x_global(1l)] = 1d_add ofs(sim, events, x_global(l), 1); // increase counter 1 by 1
case 2 // state 2

// wait 10 simulation steps and then switch to state 3
[sim, active_state] = ld steps(sim, events, activation_simsteps=[10], values=[-1,3]);

[sim, x_g'Loba'L(z)] 1d_add ofs(sim, events, x_global(2), 1); // increase counter 2 by 1
case 3 // state 3

// wait 10 simulation steps and then switch to state 1
[sim, active_state] = ld _steps(sim, events, activation_simsteps=[10], values=[-1,1]);

[sim, x_global(3)] = ld_add ofs(sim, events, x_global(3), 1); // increase counter 3 by 1
end

// multiplex the new global states
[sim, x_global_kpl] = 1d mux(sim, events, vecsize=4, inlist=x_global);

// the user defined output signals of this nested simulation
outlist = list(outdatal);
endfunction

Examples for advanced features like

@ State machines (modules/nested)

Simulations running in threads (modules/nested)
Mathematical formula parsing (modules/muparser)
Vectors handling blocks (modules/basic_ldblocks)
Calling Scilab from the simulation (modules/scilab)
Remote control interface (modules/rt_server)

Starting external processes (modules/ext_process)

Timer for simulations running in threads (pending)
(modules/synchronisation)

@ Scicos to ORTD block wrapper (modules/scicos_blocks)

can be found within the directories modules/*/demo. Often they are ready to
run and can be started by executing a simple shell script.

